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Abstract
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1 Introduction

The threshold regression (TR) model is popularly used to capture potential shifts in

economic relationships; e.g., Tong (1990) and Hansen (2000). Notwithstanding, the

conventional TR model requires the regression function is discontinuous at the true

threshold level. But in many empirical applications, there is no reason to expect a

discontinuous regression model. As a modification, Chan and Tsay (1998) propose

a continuous threshold autoregressive model to allow for a piece-wise linear function

of the threshold variable. Notably, this model allows the threshold regression to be

continuous. Still, the slope has a discontinuity at the true threshold level and, thus, is

widely regarded as a special case of the broad class of threshold autoregressive models.

Extending Chan and Tsay (1998), Hansen (2017) provides testing for a threshold

effect and inference on the regression parameters for a continuous threshold model

with an unknown threshold parameter value (hereinafter, kink threshold regression

(KTR) model). It is well established the limiting distribution of the least-squares

estimator for the TR model is nonstandard and the estimator is super consistent. For

example, with a “fixed threshold effect” assumption, Chan (1993) establishes that

the threshold parameter estimator converges to a function of a compound Poisson

process. Adopting a “diminishing threshold effect” assumption, Hansen (2000) shows

the limiting distribution involves two independent Brownian motions. By contrast,

as shown in Hansen (2017), the limiting distribution of the least-squares estimator

for the KTR model is normal, and the convergence rate is standard root-n due to the

nature of continuity.

2



All the above studies assume strict exogeneity in both slope regressors and the

threshold variable. As many practical issues of nonlinear asymmetric mechanisms

are endogenously determined, a growing body of literature has developed for the TR

model to allow for endogeneity. Under Hansen (2000)’s diminishing threshold effect

framework, Caner and Hansen (2004) allow the slope regressors to be endogenous by

using the generalized method of moments (GMM) and two-stage least squares (2SLS)

method to estimate the slope parameters and the threshold parameter, respectively.

Inspired by the sample selection method of Heckman (1979), Kourtellos et al. (2016)

employ a control function (CF) approach to estimate the TR model with endogeneity,

where they introduce an inverse Mills ratio as a bias correction term into the regres-

sion. Following Kourtellos et al. (2016), Christopoulos et al. (2021) use a copula

method to deal with the endogenous threshold variable. Yu et al. (2020) generalize

the CF approach of Kourtellos et al. (2016) and classify two groups of CF methods

for the TR model with endogeneity based on the choice of variables in the conditional

set. Specifically, the first group is an extension of the 2SLS method proposed by

Caner and Hansen (2004), while another is a natural extension to the conventional

CF approach documented in Newey et al. (1999). It is worth noticing that both CF

methods cannot be directly used to estimate the KTR model with endogeneity. In

fact, the continuity makes the inference of the least squares estimator for the KTR

model quite different from the conventional TR model even without the endogeneity.

Hidalgo et al. (2019) underscore that if we wrongly estimate a KTR model with a TR

framework of Hansen (2000), ignoring the continuity of the true model, the Hessian
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matrix becomes irregular1. This causes the least squares estimator of the thresh-

old parameter converges at a cube root-n convergence rate, slower than the root-n

convergence rate for KTR model as shown by Hansen (2017). As a result, both CF

methods proposed by Yu et al. (2020), designing for the TR framework, cannot ap-

ply to the KTR model without deviation.2 More recently, Kourtellos et al. (2022)

extend Yu et al. (2020) to allow for the unknown endogenous form by introducing

a nonparametric bias correction term into the model. The proposed semiparametric

model bypasses any misspecification problem, but is still in the framework of the TR

model. Seo and Shin (2016) consider a dynamic panel TR model with endogeneity

and develop a first-differenced GMM estimator, which allows both threshold variable

and regressors to be endogenous. Yet, the GMM method is notorious for its poor

small sample performance. Under a fixed threshold effect framework of Chan (1993)

and assuming i.i.d. sample, Yu and Phillips (2018) construct an integrated difference

kernel estimator(IDKE) for the threshold parameter. The most appealing feature of

the IDKE is the consistency of the estimator holds without requiring the instrumen-

tal variables. Also, the IDKE is super-consistent for the TR model with endogenous

threshold variable and exogenous slope regressors. Nevertheless, the i.i.d. assumption

broadly limits the scope of applications for this method.

In contrast to the proliferate studies on the TR model, surprisingly, to our knowl-

1Note that estimating the KTR model under the TR model framework violates the full rank

condition that is required for a non-degenerated asymptotic distribution of threshold estimator, see,

e.g., Hansen (2000) Assumption 1.7.
2The KTR model violates the Assumption I.9 for CF-I and II.9 for CF-II in the Yu et al. (2020).
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edge, no estimation and asymptotic result has been developed for the least squares

estimator of the KTR model with endogeneity.3 Thus, this paper aims to fill this gap

in the literature. Following Yu et al. (2020) and Kourtellos et al. (2022), our paper

employs the CF approach to correct the endogeneity in a KTR model. Our proposed

method allows both slope regressors and the threshold variable to be endogenous.

Compared with Yu et al. (2020) and Kourtellos et al. (2022), our proposed estimator

exhibits a joint normal distribution with a standard root-n convergence rate, similar

to Hansen (2017). Also, the method works for both diminishing and fixed threshold

effects, which fail to be shown under the TR framework. We develop the model both

in a time series and a panel data context. Specifically, we explore the estimation

and study the asymptotic properties of the least squares estimator for the time series

model with weakly dependent data. For the panel, we eliminate the time-invariant

fixed effects by using the first-differencing (FD) method and derive the asymptotic

results of our proposed estimator with both large numbers of cross-section (N) and

time series (T ) observations.

The rest of the paper is organized as follows. Section 2 introduces the times-series

KTR model with endogeneity, presenting our proposed estimators’ estimation method

and asymptotic properties. Section 3 extends the model to the panel context. Section

4 reports Monte Carlo simulation results, suggesting our proposed estimator has a

good small sample performance. Section 5 concludes the paper. We relegate all the

3We notice the first-differenced GMM estimator proposed by Seo and Shin (2016) works for the

KTR model with endogeneity. However, it is widely regarded that the GMM method has a poorer

finite sample performance than the least squares estimator.
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mathematical proofs to supplementary material.

To proceed, we adopt the following notation throughout the paper. We use sub-

script 0 to denote the true parameters and the accent ⋅̂ to denote the estimators. We

define ∥⋅∥ as the Euclidean norm. The operators
p→ and

d→ denote convergence in

probability and distribution, respectively. We denote (N,T ) → ∞ as the joint con-

vergence of N and T , when N and T pass to infinity simultaneously. 0A×B denotes a

A ×B matrix of ones and Im denotes identical matrix of size m.

2 Time series model

2.1 Model and estimation

Following Hansen (2017), we consider a KTR model

yt = β10(xt − γ0)I(xt < γ0) + β20(xt − γ0)I(xt ≥ γ0) + β′30zt + ut, t = 1, ..., n, (1)

where xt is the threshold variable, a scalar. I(⋅) is the indicator function and zt is

an ℓ × 1 vector of regressors, including an intercept term. Model (1) has k = 3 + ℓ

parameters to be estimated, including an unknown threshold value γ0, which is an

interior point of a compact set, Γ. Denote the true value β0 = (β10, β20, β′30)′, which

is a (k − 1) × 1 vector.

In the KTR framework, we allow both an endogenous threshold variable xt and

endogenous regressors z1t, where z1t is a dz1×1 vector and it is a subset of zt = [z′1t, z′2t]′.
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The reduced form equations of xt and z1t are

xt = π′x0pxt + vxt, (2)

z1t = π′z0pzt + vzt, (3)

where pxt and pzt allow to have duplicate variables, pxt is a dpx × 1 vector with dpx ≥

1 and pzt is a dpz × 1 vector with dpz ≥ dz1. To simplify notation, we denote all

instrumental variables as pt, which includes the non-overlapping terms in pxt and

pzt and pxt and pzt are allowed to share common variables. The endogeneity of the

threshold variable xt and regressors z1t come from the contemporaneous correlation

between ut and vt, where vt = [vxt, v′zt]′ is a (1 + dz1) × 1 vector. Note here we allow

Cov(vxt, vzt) ≠ 0. Using the control function approach, we assume E (ut∣Ft−1, xt, z1t) =

E (ut∣vt) = β′40vt almost surely, where Ft is the smallest sigma-field generated from

{(xs, z1s, z2,s+1, us, ps+1) ∶ 1 ≤ s ≤ t ≤ n} and β40 is a (1 + dz1) × 1 vector. Therefore, we

have

E(yt∣Ft−1, xt, z1t) = β10(xt − γ0)I(xt < γ0) + β20(xt − γ0)I(xt ≥ γ0) + β′30zt + β′40vt. (4)

Let δ0 = β20 − β10. We can rewrite model (1) as

yt = β10(xt − γ0) + δ0(xt − γ0)I(xt ≥ γ0) + β′30zt + β′40vt + εt, (5)

where εt = ut − β′40vt. Note that, since E(εt∣xt, z1t,Ft−1) = 0 almost surely, model (5)

is free of the endogeneity problem. Thus, we can estimate model (5) by the least

squares method.

Below, we outline the steps that are taken in the estimation procedure for model

(5).
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First step: Applying the OLS estimation to models (2) and (3), we obtain the

least squares estimator π̂x = (∑n
t=1 pxtp′xt)−1∑n

t=1 pxtxt,π̂z = (∑n
t=1 pztp′zt)−1∑n

t=1 pztz′t and

collect the residuals v̂xt = xt − π̂′xtpxt, v̂zt = zt − π̂′ztpzt. Then we have v̂t = [v̂xt, v̂′zt]′.

Second step: Let θ = (β1, δ, β
′

3, β
′
4)′, which is a (k + dz1) × 1 vector. Then, by

replacing vt with v̂t in (5), the least squares objective function of model (5) becomes

Sn(θ, γ) =
1

n

n

∑
t=1
[yt − β1(xt − γ) − δ(xt − γ)I(xt ≥ γ) − β′3zt − β′4v̂t]2, (6)

and the least squares estimator of model (5) solves the following optimization problem:

(θ̂, γ̂) = argmin
(θ,γ)∈B×Γ

Sn(θ, γ). (7)

Note that Sn(θ, γ) is non-smooth in γ. Therefore, we use a grid search method

empirically. For a given γ ∈ Γ, we obtain the conditional least squares estimator of θ

θ̂(γ) = [X(γ)′X(γ)]−1X(γ)′y, (8)

where y = [y1, y2, . . . , yn]′ , X(γ) = [x1(γ), x2(γ), . . . , xn(γ)]′, and xt(γ) = [xt − γ, (xt −

γ)I(xt ≥ γ), z′t, v̂t′]′ for t = 1,⋯, n.

Next, we substitute θ by θ̂(γ) into Sn(θ, γ) and obtain the least squares estimator

of γ0 as

γ̂ = argmin
γ∈Γ

Sn(θ̂(γ), γ) = argmin
γ∈Γ

1

n
[y −X(γ)θ̂(γ)]′[y −X(γ)θ̂(γ)]. (9)

Then, the least squares estimator for θ0 is given by θ̂ = θ̂(γ̂).
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2.2 Assumptions and limiting results

Below, we list regularity assumptions used to derive the consistency and asymptotic

distribution of our proposed estimators.

Assumptions-time series. For some r > 1,

T1. {(yt, xt, zt, pt)} is a strictly stationary, ergodic, and absolutely regular sequence

with mixing coefficients α(m) = O(m−ξ) for some ξ > r/(r − 1);

T2. (a) E∣yt∣4r < ∞, E∣xt∣4r < ∞, E ∥zt∥4r < ∞; (b) E ∥vt∥4r < ∞, and E ∥pt∥4r < ∞,

E(ptp′t) is nonsingular;

T3. infr∈Γ detQ(γ) > 0, where Q(γ) = E[x∗t (γ)x∗′t (γ)], and x∗t (γ) equals xt(γ) with

v̂t being replaced with vt;

T4. xt has a density function f(x) and f(x) ≤ f̄ <∞ over its domain for some finite

constant f̄ ;

T5. (a) E(ut∣Ft−1, xt, zt) = E(ut∣vt) = β′40vt almost surely for all t, where Ft is the

smallest sigma-field generated from {(xs, zs, us, ps+1) ∶ 1 ≤ s ≤ t ≤ n}; (b) {(vt,Ft−1)}

is a martingale difference sequence with E(vt∣Ft−1) = 0 almost surely;

T6. δ0 ≠ 0 and θ0 ∈ B ⊂Rk+dz1 , where B is compact;

T7. γ0 = argmin
γ∈Γ

L∗(θ∗(γ), γ) is unique, where θ∗(γ) = E[x∗t (γ)x∗′t (γ)]−1E[x∗t (γ)yt],

L∗(θ, γ) = E[S∗n(θ, γ)], S∗n(θ, γ) equals Sn(θ, γ) with v̂t being replaced with vt, and Γ

is compact.

In Assumptions T1, we assume a β-mixing sequence, where the choice of r involves

a trade-off between the allowable degree of serial dependence and the number of

finite moments; see discussions given in Remark 2.3 of Chan and Tsay (1998) and
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Assumption 1.1 of Hansen (2017). Assumption T2 contains unconditional moment

conditions. Assumption T2(a) is the regular moment conditions required and T2(b)

and T5(b) ensure that the OLS estimators of the reduced form models (2)-(3) exist

and converge to the true parameter vector at the root-n rate. Assumption T3 ensures

that the parameter estimation is well defined for all γ ∈ Γ. Assumption T4 makes sure

our xt has a bounded density function. Assumption T5(a) is the assumption for a

linear endogenous structure, which can be easily extended to a non-linear endogenous

structure.4 By Assumption T6, we consider a kink regression model. Assumption T7

is an identification assumption, similar to Assumption 2.1 of Hansen (2017).

Next, denote ϕ = (θ′, γ)′, a (k + 1 + dz1) × 1 vector, and Ht =Ht(ϕ0) with

Ht(ϕ) = −
∂

∂ϕ
[yt − x∗′t (γ)θ] =

⎛
⎜⎜
⎝

x∗t (γ)

−β1 − δI(xt ≥ γ)

⎞
⎟⎟
⎠
. (10)

Below, we present the limiting results of our proposed estimator.

Theorem 1-Time Series. Under Assumptions T1-T7, as n→∞, we have

√
n (ϕ̂ − ϕ0)

d→ N (0, V ) , (11)

where V = Q−1SQ−1, S = E (HtH ′tε
2
t ), and Q = E(HtH ′t) is a (k+1+dz1)×(k+1+dz1)

matrix.

Remark 1: The proof of Theorem 1-Time Series is given in the appendix. The

slope and threshold estimators converge at the square-root-n rate and are jointly

normally distributed with a non-zero asymptotic covariance matrix. By contrast, for

4see, e.g, Kourtellos et al. (2022) consider this case in a TR model framework.

10



the discontinuous TR model, the threshold estimator converges faster than square-

root-n, and the limiting distribution is non-standard. Thus, the TR model’s threshold

estimator is asymptotically independent of the slope estimators, which converge at

a standard root-n rate. These stark differences originate from the continuous nature

of the KTR function. To make an inference, we suggest using the following as the

estimator for the asymptotic variance-covariance matrix

V̂ = Q̂−1ŜQ̂−1,

where Q̂ = n−1∑n
t=1 Ĥt(ϕ̂)Ĥ ′t(ϕ̂), Ŝ = n−1∑n

t=1 Ĥt(ϕ̂)Ĥ ′t(ϕ̂)ε̂2t (ϕ̂) with ε̂t(ϕ̂) = yt−β̂1(xt−

γ̂) − δ̂(xt − γ̂)I(xt ≥ γ̂) − β̂′3zt − β̂′4v̂t, and

Ĥt(ϕ) = −
∂

∂ϕ
[yt − x′t(γ)θ] =

⎛
⎜⎜
⎝

xt(γ)

−β1 − δI(xt ≥ γ)

⎞
⎟⎟
⎠
. (12)

3 Panel model extension

Many empirical problems of nonlinear asymmetric mechanisms are explicitly within

a panel data context, including but not limited to the potential threshold effect of

COVID-19 on the unemployment rate that we will discuss more in section 5. There-

fore, we extend our baseline time series model to an endogenous kink threshold

panel model with unknown fixed effects and cross-sectional independence. Below,

we present our model, the estimation strategy, and the asymptotic results.
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3.1 Model and estimation

We consider the panel data with both sufficiently large numbers of cross-sectional

units N and time periods T .5 To remove the time-invariant fixed effects, we apply

the first-differencing method, deviating from the within-transformation that is used

in Zhang et al. (2017). Our panel kink threshold regression model is as follows

yit = β10(xit − γ0)I(xit < γ0) + β20(xit − γ0)I(xit ≥ γ0) + β′30zit + bi + uit, (13)

for i = 1, ...,N, t = 1, ..., T , where yit is the dependent variable, xit is a scalar thresh-

old variable, zit is an ℓ × 1 vector of time-varying regressors, which may include the

time-variant fixed effect. bi is the ith unobserved individual fixed effect, which is

independent of the errors uit for all t. We denote β0 = (β10, β20, β′30)′ ∈ Rk−1, where

k = 3 + ℓ. The unknown threshold value γ0 is an interior point of a compact set, Γ.

Again, we have the endogenous threshold variable and endogenous regressors z1,it,

where z1,it is a dz1 × 1 vector and it is a subset of zit = [z′1,it, z′2,it]′. The reduced form

equations of xit and z1,it are given by

xit = Π′x0px,it + bx,i + vx,it, (14)

z1,it = Π′z0pz,it + bz,i + vz,it, (15)

5Here we let both N and T go to infinity in order to adapt to our empirical applications. Another

interesting setup is to allow only N to go to infinity while taking T fixed as discussed in Zhang et al.

(2017). Under this case, our proposed estimator will be root-N consistent instead of root-NT

consistent.
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where px,it and pz,it allow to have common variables, px,it is a dpx × 1 vector with

dpx ≥ 1 and pz,it is a dpz × 1 vector with dpz ≥ dz1, bx,i and bz,i are the unknown

fixed effects, which are independent of vx,it and vz,it, respectively. To simplify no-

tation, we denote all instrumental variables by pit, including px,it and pz,it, and

vit = [vx,it, v′z,it]′, a (1 + dz1) × 1 vector. In addition, we allow Cov(vx,it, vz,it) ≠ 0.

Using the control function approach, for each i, we assume E (uit∣Fi,t−1, xit, z1,it) =

E (uit∣vit) = β′40vit almost surely, where Fit is the smallest sigma-field generated from

{(xis, z1,is, z2,i,s+1, uis, pi,s+1, bx,i, bz,i) ∶ 1 ≤ s ≤ t ≤ T} and β40 is a (1 + dz1) × 1 vector.

The endogeneity of the threshold variable xit and regressors z1,it come from the con-

temporaneous correlation between uit and vit.

Applying the first-differencing to model (13) and denoting δ0 = β20 − β10 yields

∆yit = β10∆xit + δ0(Xit − γ0τ2)′Iit(γ0) + β′30∆zit +∆uit, (16)

where ∆ait = ait −ai,t−1 denotes the first difference of variable a, τm is an m× 1 vector

of ones, and

Xit − γ0τ2 =
⎛
⎜⎜
⎝

xit − γ0

xi,t−1 − γ0

⎞
⎟⎟
⎠

and Iit(γ0) =
⎛
⎜⎜
⎝

I(xit ≥ γ0)

−I(xi,t−1 ≥ γ0)

⎞
⎟⎟
⎠
.

Next, we have

E(∆yit∣Fi,t−2, xit, xi,t−1, zit, z1,i,t−1, pit) = β10∆xit+δ0(Xit−γ0τ2)′Iit(γ0)+β′30∆zit+β′40∆vit,

(17)

where applying the law of iterative expectation and using the reduced form equations
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(14) and (15) gives

E(uit∣Fi,t−2, xit, xi,t−1, zit, z1,i,t−1, pit)

= E [E(uit∣Fi,t−1, xit, z1,it)∣Fi,t−2, xit, xi,t−1, zit, z1,i,t−1, pit]

= β′40E (vit∣Fi,t−2, xit, xi,t−1, zit, z1,i,t−1, pit) = β′40vit, (18)

and E(ui,t−1∣Fi,t−2, xit, xi,t−1, zit, z1,i,t−1, pit) = E (ui,t−1∣Fi,t−2, xi,t−1, z1,i,t−1) = β′40vi,t−1,

since future information does not affect past information.

Thus, combining (16) with (17) gives

∆yit = β10∆xit + δ0(Xit − γ0τ2)Iit(γ0) + β′30∆zit + β′40∆vit +∆εit, (19)

where ∆εit = ∆uit − β′40∆vit and E(∆εit∣Fi,t−2, xit, xi,t−1, zit, z1,i,t−1, pit) = 0. Hence,

by including the auxiliary regressor ∆vit into the regression, our model (19) has no

endogeneity issue.

Next, we proceed to show the estimation strategy.

First step: Taking the first difference transformation of (14) and (15), we elimi-

nate the unknown fixed effects and obtain

∆xit = Π′x0∆px,it +∆vx,it, (20)

∆z1,it = Π′z0∆pz,it +∆vz,it, (21)

Then, we apply the OLS estimation to the first differenced control functions (20) and

(21) to acquire the least squares estimators:

Π̂x = (
N

∑
i=1

T

∑
t=2

∆px,it∆p′x,it)−1(
N

∑
i=1

T

∑
t=2

∆px,it∆xit),

Π̂z = (
N

∑
i=2

T

∑
t=1

∆pz,it∆p′z,it)−1(
N

∑
i=1

T

∑
t=2

∆pz,it∆z′1,it).
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We collect the residuals ∆v̂x,it = ∆xit − Π̂′x∆px,it and ∆v̂z,it = ∆z1,it − Π̂′z∆pz,it. Let

∆v̂it = [∆v̂x,it,∆v̂′z,it]′.

Second step: Let θ = (β1, δ, β′3, β
′
4)′ ∈ Rk+dx1 , which is a (k + dz1) × 1 vector.

Replacing ∆vit by ∆v̂it in (17), we obtain the least squares criterion function

SNT (θ, γ) =
1

N(T − 1)
N

∑
i=1

T

∑
t=2
[∆yit−β1∆xit−δ(Xit−γτ2)Iit(γ)−β′3∆zit−β′4∆v̂it]2. (22)

Our least squares estimator is the minimizer of SNT (θ, γ); i.e.,

(θ̂, γ̂) = argmin
(θ,γ)∈B×Γ

SNT (θ, γ). (23)

For a given γ ∈ Γ, we get the conditional least squares estimator of θ; i.e.,

θ̂(γ) = argmin
θ∈B

1

N(T − 1)
N

∑
i=1

T

∑
t=2
(∆yit −∆x′it(γ)θ)2, (24)

where ∆xit(γ) = [∆xit, (Xit − γτ2)′Iit(γ),∆z′it,∆v̂′it]′.

By solving (24), we have

θ̂(γ) = [
N

∑
i=1

T

∑
t=2

∆xit(γ)∆x′it(γ)]
−1[

N

∑
i=1

T

∑
t=2

∆xit(γ)∆yit]. (25)

Empirically, we can use a grid search method to obtain γ̂ by minimizing the sum of

squared errors criterion function

γ̂ = argmin
γ∈Γ

SNT (θ̂(γ), γ) = argmin
γ∈Γ

1

N(T − 1)
N

∑
i=1

T

∑
t=2
[∆yit −∆x′it(γ)θ̂(γ)]

2
. (26)

Then, we obtain the estimator of θ0 with θ̂ = θ̂(γ̂).

3.2 Assumptions and limiting results

The assumptions needed for the panel model and its asymptotic theory are collected

below.
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Assumptions-panel. For some r > 1,

P1. (a){(yit, xit, zit, pit) ∶ t = 1,2, . . .} are independently identically distributed (i.i.d.)

across index i; (b) for each i, {(yit, xit, zit, pit) ∶ t = 1,2, . . .} is a strictly stationary,

ergodic, and absolutely regular sequence with mixing coefficients α(m) = O(m−ξ) for

some ξ > r/(r − 1);

P2. (a) E∣∆yit∣4r < ∞, E∣∆xit∣4r < ∞, E ∥∆zit∥4r < ∞; (b)E ∥∆vit∥4r < ∞, and

E ∥∆pit∥4r <∞, E(∆pit∆p′it) is non-singular;

P3. infγ∈Γ detQ(γ) > 0, where Q(γ) = E[∆x∗it(γ)∆x∗′it (γ)] and ∆x∗it equals ∆xit(γ)

with ∆v̂it being replaced with ∆vit;

P4. xit has a density function f(x) and f(x) ≤ f̄ <∞ over its domain for a finite real

number f̄ ;

P5. For each i, (a) {vit,Fi,t−1} is a martingale difference sequence with E(vit∣Fi,t−1) =

0, where Fit is the smallest sigma-field generated from {(xis, z1,is, z2,i,s+1, uis, pi,s+1, bx,i, bz,i) ∶

1 ≤ s ≤ t ≤ T}; (b) E(uit∣Fi,t−1, xit, z1,it) = E(uit∣vit) = β′40vit almost surely; (c) bi is

independent of the error term uit for all t;

P6. δ0 ≠ 0 and θ0 ∈ B ⊂Rk+dz1 , where B is compact;

P7. γ0 = argmin
γ∈Γ

L∗(θ∗(γ), γ) is unique, where θ∗(γ) = E[∆x∗it(γ)∆x∗′it (γ)]−1E[∆x∗it(γ)∆yit],

L∗(θ∗(γ), γ) = E[S∗NT (θ∗(γ), γ)], S∗NT (θ, γ) equals SNT (θ, γ) with ∆v̂it being replaced

with ∆vit, and Γ is compact.

In Assumption P1(a), we assume cross-sectional independence. Assumption P1(b)

assumes a β-mixing sequence across index t, where the choice of r involves a trade-off

between the allowable degree of serial dependence and the number of finite moments.
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And the asymptotics are taken in large N and large T . Note Zhang et al. (2017)

only allow N to go to infinity and treat T as fixed. Assumption P2 contains uncon-

ditional moment conditions. Assumption P2(a) is the regularity moment conditions

required and P2(b) and P5(b) ensure that the OLS estimators of the first differencing

reduced form models (20)-(21) exist and converge to the true parameter vector at the

root-NT rate. Assumption P3 ensures that the parameter estimation is well defined

for all γ ∈ Γ. Assumption P4 makes sure our xit has a bounded density function.

Assumption P5(a) is the assumption for a linear endogenous structure, which can

be easily extended to a non-linear endogenous structure. Assumption P5(c) assumes

the unobserved individual effect bi is independent of the errors uit for all t, which

is a standard assumption in the panel data model. By Assumption P6, we consider

a kink regression model. Assumption P7 is an identification assumption, similar to

Assumption 2.1 of Hansen (2017).

Denote ϕ = (θ′, γ)′ and let

∆Hit(ϕ) = −
∂

∂ϕ
[∆yit −∆x∗′it (γ)θ] =

⎛
⎜⎜
⎝

∆x∗it(γ)

−δ[I(xit ≥ γ) − I(xi,t−1 ≥ γ)]

⎞
⎟⎟
⎠
, (27)

and ∆Hit =∆Hit(ϕ0).

Theorem 2-panel. Under Assumptions P1-P7, as (N,T )→∞, we have

√
NT (ϕ̂ − ϕ0)

d→ N (0,V) , (28)

where V = Q−1SQ−1, S = E (∆Hit∆H ′it∆ε2it), and Q = E(∆Hit∆H ′it), is a (k + 1 +

dz1) × (k + 1 + dz1) matrix.
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Remark 2: The proof is provided in the appendix. Similar to the time series

model, our slope and threshold estimators are jointly normally distributed with root-

NT convergence rate and they have a non-zero asymptotic covariance matrix. To

make an inference, we estimate the asymptotic variance-covariance matrix by

V̂ = Q̂−1ŜQ̂−1,

where Q̂ = 1
N(T−1) ∑

N
i=1∑T

t=2∆Ĥit(ϕ̂)∆Ĥ ′it(ϕ̂) and Ŝ = 1
N(T−1) ∑

N
i=1∑T

t=2∆Ĥit(ϕ̂)∆Ĥ ′it(ϕ̂)∆ε̂2it(ϕ̂).

Here ∆ε̂it(ϕ̂) =∆yit − β̂1∆xit − δ̂(Xit − γ̂τ2)Iit(γ̂) − β̂′3∆zit − β̂′4∆v̂it and

∆Ĥit(ϕ) = −
∂

∂ϕ
[∆yit −∆x′it(γ)θ] =

⎛
⎜⎜
⎝

∆xit(γ)

−δ[I(xit ≥ γ) − I(xi,t−1 ≥ γ)]

⎞
⎟⎟
⎠
. (29)

4 Monte Carlo simulations

This section contains Monte Carlo simulations to evaluate the finite sample perfor-

mance of our proposed estimator. Below, we list the four data generating processes

(DGPs)– two give time series data and two yield panel data.

DGP1:

yt = c0 + β10xt + δ0(xt − γ0)I(xt ≥ γ0) + ut, ut = 0.2ut−1 + κvt, (30)

xt = 2 + vt + pt, t = 1, ..., n. (31)

DGP2:

yt = c0 + β10xt + δ0(xt − γ0)I(xt ≥ γ0) + β30zt + ut, ut = 0.2ut−1 + κ(v1t + v2t), (32)
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xt = 2 + (0.9v1t + 0.1v2t) + p1t, zt = 2 + (0.1v1t + 0.9v2t) + p2t, (33)

t = 1, ..., n.

DGP3:

yit = c0 + β10xit + δ(xit − γ0)I(xit ≥ γ0) + bi + uit, uit = 0.2ui,t−1 + κvit, (34)

xit = 2 + vit + pit, i = 1, ...,N, t = 1, ..., T. (35)

DGP4:

yit = c0 +β10xit + δ0(xit −γ0)I(xit ≥ γ0)+β30zit + bi +uit, uit = 0.2ui,t−1 +κ(v1,it + v2,it),

(36)

xit = 2 + (0.9v1,it + 0.1v2,it) + p1t zit = 2 + (0.1v1,it + 0.9v2,it) + p2t (37)

i = 1, ...,N, t = 1, ..., T.

In the time series setup, we consider two different data-generating processes,

DGP1, and DGP2. In DGP1, we only allow the threshold variable to be endoge-

nous, while in DGP2, we allow both the threshold variable xt and slope regressor zt

to be endogenous. The endogeneity of xt in DGP1 comes from the common factor

vt between xt and ut. In DGP2, the endogeneity of (xt, zt) comes from the com-

mon factors v1t and v2t shared with ut. DGP3 and DGP4 are designed for the panel

KTR context. Specifically, DGP3 allows the threshold variable xt to be endogenous,

and DGP4 allows both the threshold variable and regressors to be endogenous. In

DGP3, the endogeneity of xit comes from the common factor vit between xit and

uit. In DGP4, the endogeneity of (xit, zit) comes from the common factors v1,it and
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v2,it shared with ut. For all data-generating processes, the error terms are station-

ary AR(1) sequences. We use κ to control the severity of endogeneity and we set

c0 = β10 = δ0 = β30 = 1, and γ0 = 2.

In DGP1, (vt, pt) ∼ i.i.d.N(0, I2), where pt is our instrumental variable . In DGP2,

(v1t, v2t, p1t, p2t, εt) ∼ i.i.d.N(0, I5) and p1t and p2t are the instrumental variable for xt

and zt, respectively. In DGP3, we generate (vit, pit) ∼ i.i.d.N(0, I2), and the unknown

fixed effects, bi ∼i.i.d.N(0,1). In DGP4, we have (v1,it, v2,it, p1,it, p2,it) ∼ i.i.d.N(0, I4)

and bi represents individual fixed effects with distribution N(0,1) across i. With κ ∈

{0.05,0.5,0.95,2}, we check the performance of our estimator under low, moderate,

and high endogenous severity.6 We set the sample size n = 100, 200, 300, and 400 for

GDP1 and DGP2, and N = 10,20,30, and 40 and T = 10,20,30, and 40 for DGP3 and

DGP4. The number of Monte Carlo replications is 5,000. Tables 1-2 , 3-4 report the

root mean squared errors (RMSEs) for our proposed estimator for DGP1 and DGP3,

respectively7.

[Table 1; Table 2]

Table 1 and2 display the Monte Carlo simulation results for our DGP1. We

compare the results of our proposed estimator and the least squares estimator ignoring

the endogeneity issue under different sample sizes. We have the following observations.

6To save space, we only report the panel model results with severe endogeneity (i.e. κ = 2).The

results for other cases are available from the authors upon request.
7The online supplementary material collects the Monte Carlo results of DGP2 and DGP4 in

Section ??. The results confirm our reports from DGP1 and DGP3, respectively.
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First, we find that, as the number of observations increases, the RMSE without control

functions remains large as the endogenous severity rises (κ increases). For example,

without using the control function correction approach, the RMSE for β1 barely

decreases, even with a mild degree of endogeneity. By contrast, with the control

function correction, the RMSEs for all parameters decrease rapidly as the sample size

increases, confirming the validity of our CF approach to tackling endogeneity.

[Table 3; Table 4]

Tables 3 and 4 give the Monte Carlo simulation results for DGP3. With severe

endogeneity, the findings are similar to those in the time series model.

5 Conclusion

As in Hansen (2017), we consider a kink threshold model and allow for possible en-

dogenous threshold variables and linear regressors. Following Kourtellos et al. (2016)

and Yu et al. (2020), we extend the usage of the control function approach to tackle

the problem and propose an estimator that achieves a standard joint normal distri-

bution. Compared with other methods dealing with endogeneity in the context of a

threshold regression model our method is easy to apply and more reliable, especially

with a small sample size. Also, the continuity of the regression function and the joint

normal distribution of our proposed estimator provide more useful possibilities for

economic applications. Monte Carlo simulations show that the small sample perfor-

mance of our proposed estimator is quite satisfactory both for time series and panel
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cases.

Our method has several possible extensions. Instead of introducing bias correction

terms linearly (β′40vt in (5)), one can introduce a nonparametric endogeneity correc-

tion term (g(vt), where g(⋅) is an unknown function), like Kourtellos et al. (2022)

in the threshold regression model. Also, one can relax the linear specification in

reduced-form functions (2)-(3) to a more flexible semi-/nonparametric specification.

Finally, it is interesting to allow the coefficients of the reduced form equations to be

heterogeneous across i. In that case, both N and T going to infinity is not optional

but necessary. We leave these for future research.
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Table 1: Estimation Results for DGP1

MEAN-β RMSE-β MEAN-δ RMSE-δ MEAN-γ RMSE-γ

(β10 = 1) (δ0 = 1) (γ0 = 2)

κ = 0.05 No CF

T=100 1.0249 0.0255 0.9999 0.009 2 0

T=200 1.025 0.0252 1 0.0063 2 0

T=300 1.025 0.0251 0.9999 0.005 2 0

T=400 1.025 0.0251 1 0.0044 2 0

κ = 0.05 CF

T=100 0.9969 0.0174 1 0.0025 2 0

T=200 0.9986 0.0093 1 0.0017 2 0

T=300 0.9992 0.0069 1 0.0014 2 0

T=400 0.9992 0.0061 1 0.0012 2 0

κ = 0.5 NO CF

T=100 1.2459 0.2556 1.0083 0.0915 2.0045 0.1531

T=200 1.2472 0.2515 1.0036 0.0632 1.9975 0.1002

T=300 1.2489 0.2516 1.0017 0.0502 2.0015 0.0822

T=400 1.2488 0.2509 1.0017 0.0444 1.9992 0.0721

κ = 0.5 CF

T=100 0.9684 0.1744 1.0006 0.0256 2.0006 0.041

T=200 0.9863 0.0936 1.0001 0.0174 2 0.021

T=300 0.992 0.0695 0.9999 0.014 1.9999 0.011

T=400 0.9923 0.0609 0.9998 0.0119 2.0001 0.0068

NOTE: CF=Control function approach
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Table 2: Estimation Results for DGP1(continue)

MEAN-β RMSE-β MEAN-δ RMSE-δ MEAN-γ RMSE-γ

(β10 = 1) (δ0 = 1) (γ0 = 2)

κ = 0.95 NO CF

T=100 1.4547 0.4783 1.0409 0.1853 2.0013 0.3474

T=200 1.4642 0.4736 1.017 0.1204 1.9958 0.213

T=300 1.4708 0.4766 1.0102 0.0994 2.0027 0.165

T=400 1.469 0.4732 1.0116 0.0847 1.9998 0.1379

κ = 0.95 CF

T=100 0.9342 0.3088 1.0011 0.0483 1.9997 0.0782

T=200 0.9716 0.1756 1.0004 0.0324 1.9982 0.0549

T=300 0.9852 0.1353 1.0003 0.0268 2.0006 0.0443

T=400 0.989 0.1149 1.0001 0.0227 1.9998 0.0368

κ = 2 NO CF

T=100 1.905 0.9721 1.1914 0.4693 2.0048 0.707

T=200 1.9475 0.9751 1.0986 0.2855 1.9976 0.5218

T=300 1.9729 0.9884 1.0604 0.2234 2.0074 0.414

T=400 1.9741 0.9852 1.0519 0.1873 2.0008 0.3481

κ = 2 CF

T=100 0.8568 0.6511 1.0092 0.1018 1.9955 0.1711

T=200 0.9389 0.3701 1.0038 0.0683 1.9971 0.1143

T=300 0.9681 0.2846 1.0024 0.0564 2.0022 0.0914

T=400 0.976 0.2421 1.0016 0.0477 1.9994 0.0795

NOTE: CF=Control function approach
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Table 3: Estimation Results for DGP3

MEAN-β1 RMSE-β1 MEAN-δ RMSE-δ MEAN-γ RMSE-γ

(β10 = 1) (δ0 = 1) (γ0 = 2)

NO CF FD

T=10 N=10 1.7878 0.8682 1.2221 0.4992 1.9805 0.7298

N=20 1.8474 0.8819 1.1121 0.3057 2.0028 0.5573

N=30 1.867 0.8876 1.069 0.2377 2.0002 0.4444

N=40 1.8725 0.8869 1.0513 0.1993 1.9919 0.3793

T=20 N=10 1.8388 0.8745 1.113 0.3031 1.9792 0.5532

N=20 1.8786 0.8927 1.0471 0.1941 2.004 0.3813

N=30 1.8842 0.8929 1.0298 0.1529 1.9958 0.297

N=40 1.8907 0.8967 1.0193 0.1309 1.9976 0.2401

T=30 N=10 1.867 0.8879 1.0621 0.2335 1.9968 0.442

N=20 1.8872 0.8954 1.0273 0.154 2.0014 0.2933

N=30 1.8921 0.8971 1.0181 0.1223 2.0031 0.2202

N=40 1.8958 0.8996 1.0121 0.1074 2.0031 0.1865

T=40 N=10 1.8779 0.8924 1.0462 0.2001 2.0072 0.3807

N=20 1.8919 0.8978 1.0193 0.131 2.0052 0.2421

N=30 1.8954 0.8993 1.0128 0.1061 2.005 0.1903

N=40 1.8964 0.899 1.0075 0.0912 2.0002 0.155

NOTE: FD=first difference; CF=control function approach;
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Table 4: Estimation Results for DGP3(continue)

MEAN-β1 RMSE-β1 MEAN-δ RMSE-δ MEAN-γ RMSE-γ

(β10 = 1) (δ0 = 1) (γ0 = 2)

CF FD

T=10 N=10 0.9656 0.2541 1.0169 0.1148 1.9975 0.192

N=20 0.9824 0.171 1.006 0.077 1.9991 0.1249

N=30 0.9905 0.1355 1.0032 0.0605 1.9995 0.0998

N=40 0.992 0.1192 1.0036 0.0532 2.0016 0.0846

T=20 N=10 0.9867 0.1661 1.005 0.0653 1.9979 0.1055

N=20 0.9911 0.1138 1.0025 0.0451 1.9998 0.0738

N=30 0.9942 0.0943 1.0012 0.0365 1.9997 0.061

N=40 0.995 0.0807 1.0004 0.0315 2.0011 0.0536

T=30 N=10 0.9887 0.131 1.0024 0.0493 2.0005 0.0805

N=20 0.9985 0.0934 1.0008 0.0341 1.9994 0.0577

N=30 0.9971 0.0755 1.0008 0.0281 1.9994 0.0472

N=40 0.9988 0.0649 1.0003 0.0241 1.9997 0.0391

T=40 N=10 0.9932 0.1161 1.0009 0.0413 1.9999 0.0679

N=20 0.9985 0.0792 1.0007 0.0285 2.0006 0.0477

N=30 0.9965 0.066 1 0.0232 2.0003 0.038

N=40 0.9973 0.0563 1 0.0205 2.0005 0.0295

NOTE: FD=first difference; CF=control function approach;
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